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ABSTRACT

Smartphone pressure observations have the potential to greatly increase surface observation density on

convection-resolving scales. Currently available smartphone pressure observations are tested through as-

similation in a mesoscale ensemble for a 3-day, convectively active period in the eastern United States. Both

raw pressure (altimeter) observations and 1-h pressure (altimeter) tendency observations are considered. The

available observation density closely follows population density, but observations are also available in rural

areas. The smartphone observations are found to contain significant noise, which can limit their effectiveness.

The assimilated smartphone observations contribute to small improvements in 1-h forecasts of surface

pressure and 10-m wind, but produce larger errors in 2-m temperature forecasts. Short-term (0–4 h) pre-

cipitation forecasts are improved when smartphone pressure and pressure tendency observations are as-

similated as compared with an ensemble that assimilates no observations. However, these improvements are

limited to broad, mesoscale features with minimal skill provided at convective scales using the current

smartphone observation density. A specific mesoscale convective system (MCS) is examined in detail, and

smartphone pressure observations captured the expected dynamic structures associated with this feature.

Possibilities for further development of smartphone observations are discussed.

1. Background

A significant obstacle to producing skillful, short-term

numerical weather forecasts of convection is the lack of

high-density observations providing accurate, convective-

scale initial conditions (e.g., Stensrud and Fritsch 1994;

Roebber et al. 2002; Fowle and Roebber 2003; Dabberdt

et al. 2005;Gallus et al. 2005; Snook et al. 2015; Sobash and

Stensrud 2015). Several studies have suggested that

forecast improvement associated with kilometer-scale nu-

merical prediction is ultimately limited by a lack of high-

density observations (Mass et al. 2002; Roebber et al. 2002,

2004). Current observation networks, particularly surface

and radiosonde networks, were primarily designed for

synoptic-scale forecasting and are ill-suited to constraining

short-term, convective-scale forecasts (Sun et al. 2014).

Recent research has found that increased surface

observation density can improve mesoscale forecast

skill. For example, studies have shown that assimilating

observations from regional surface observing networks

can improvemesoscale forecasts of severe thunderstorm

development (e.g., Wheatley and Stensrud 2010; Sobash

and Stensrud 2015; Xue and Martin 2006; Dong et al.

2011). However, these networks have often been tem-

porary (available only for a particular field campaign) or

exist at densities too low to resolve convective-scale

features [e.g., the Oklahoma Mesonet with station sep-

arations of 30–70km;McPherson et al. 2007; Sobash and

Stensrud (2015)]. Alternatively, Madaus et al. (2014)

describes, using a regional mesoscale ensemble, the

impact of crowdsourced observations of surface pres-

sure from networks such as the Weather Underground

(http://www.wunderground.com) ‘‘backyard’’ weather

stations. These pressure observations improved short-

term (0–6h) forecasts of mesoscale features like frontal

passages and convergence zones in their experiments.

An increasing number of smartphones contain ba-

rometers, whose pressure observations can be used for

meteorological data assimilation. Mass and Madaus

(2014) describe these smartphone pressure observations

(hereafter abbreviated SPOs) and provide a case study

of a convective event in eastern Washington State in

which assimilating SPOs improves the forecast place-

ment of convective storms in an area of relatively sparse

conventional observations. Since those experiments, the
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number of available smartphone observations has grown

considerably, and further work to provide quality con-

trol and characterize the errors of SPOs is ongoing. As

SPOs could attain greater observational density than

any extant surface observing network, this work in-

vestigates how currently available SPOs may contribute

to improved numerical forecasts in a case study of a

convectively active period.

2. Methods

a. Description of the study period

For this case study, we examine a 3-day period from

1200 UTC 26 July 2014 through 1200 UTC 29 July 2014

in the east-central region of the continental United

States. Figure 1a shows the extent of the forecast do-

main, with total accumulated precipitation during the

study period as estimated from the National Centers for

Environment Prediction stage IV hourly precipitation

analyses (Lin and Mitchell 2005). Figure 1b shows the

accumulated precipitation over the same period as

computed from a Weather Research and Forecasting

Model (WRF; Skamarock et al. 2008) simulation nudged

to hourly High Resolution Rapid Refresh (HRRR)

analyses with 1-h HRRR forecasts as boundary condi-

tions over this period. There is remarkably little agree-

ment between the observed and simulated precipitation

fields, indicating this was a challenging forecast period

for operational mesoscale models.

The 500-hPa heights and winds as well as surface

analyses from 0000 UTC 27 July 2014 and 0000 UTC

28 July 2014 are shown in Fig. 2. Initially, the synoptic-

scale forcing is relatively weak, but there are several

outbreaks of airmass-type convection, which is typical

for this midsummer period. During the latter half of the

study period, a short-wave trough and associated sur-

face cyclone bring organized forcing for several con-

vective events (Fig. 2, right). One example is the

initiation and evolution of a mesoscale convective

system in the Ohio River valley, beginning at

0000 UTC 27 July. Though this MCS is prominent

during the study period, it was completely absent from

the HRRR-nudged simulation (Fig. 1, boxed region).

While our analysis mostly evaluates forecast perfor-

mance over the entire study region, this MCS event is

examined in greater detail to examine how SPOs may

contribute to improving highly sensitive convective

forecasts.

b. Smartphone observations

For this case study, we collect SPOs from two smart-

phone apps: OpenSignal and PressureNet. Smartphone

users download one of these apps and give it permission

to run in the background and transmit pressure obser-

vations. The frequency of reporting varies, but most

phones produce pressure observations at least once per

hour. Given the small number of phones that transmit at

higher frequencies, we limit ourselves to hourly obser-

vations in this study.

1) OBSERVATION QUALITY CONTROL

Quality control checks are applied to the observations

prior to data assimilation. First, observations are limited

to those within 15min of each assimilation time. If there

are multiple observations from the same smartphone

within this window, the observation closest to the as-

similation time is retained and others are discarded as

duplicates. To remove potential mismatch between ob-

servation elevation and model terrain, the raw SPOs are

converted to altimeter settings. For the remainder of

this study, the terms smartphone pressure observation

FIG. 1. Total accumulated precipitation (mm) from 1200 UTC 26 Jul 2014 through 1200 UTC 29 Jul 2014 as

derived from (a) the NCEP stage IV hourly precipitation analyses and (b) aWRF simulation over the same period.

The lower Ohio River valley is outlined in black.
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and smartphone altimeter observation are used in-

terchangeably. We compute the altimeter setting using

the following formula:

P
alt
5 (p2 0:3)

"
11

k
1
h

(p2 0:3)k2

#1/k2
, (1)

where k1 5 8:422 880 73 1025 and k2 5 0:190 284 are

constants derived from the expected vertical rate of

pressure change in the U.S. Standard Atmosphere, 1976

(Dubin et al. 1976), h is the phone elevation above sea

level in meters, p is the raw smartphone pressure in

hectopascals, and Palt is the altimeter setting in

hectopascals.

In general, the elevation retrieval from the smart-

phones is unreliable or not possible because of inac-

curacies in the global positioning system (GPS) based

elevation estimation method. As such, we compare the

reported GPS location to Shuttle Radar Topography

Mission (SRTM) 1-arc-s elevation measurements and

assign each smartphone observation the SRTM eleva-

tion interpolated to the phone location, plus 1m (as it is

unlikely the phone is exactly on the ground). We

recognize that the GPS location may also contain errors,

which could increase the uncertainty in the elevation

estimate. Furthermore, there is no guarantee that the

smartphone is close to ground level, particularly in ur-

ban areas with multistory buildings. Here, we do not

attempt to estimate or correct for this possible error, but

envision developing strategies for doing so in the future.

This elevation uncertainty could be included in the ob-

servation error variance used for data assimilation, as

near–sea level atmospheric pressure decreases by about

1 hPa for every 8m of elevation increase. However, here

all smartphone observations are assigned an observation

error variance of 1 hPa2, which is similar to the surface

pressure observation errors used in operational data

assimilation systems (e.g., Burton 2013; Hu et al. 2013).

Outlier observations are identified as follows. SPOs

with an altimeter setting outside of an 890–1100-hPa

range are discarded. This typically removes less than 1%

of the observations. The SPO altimeter settings

throughout the study domain are then sorted by eleva-

tion and observation value and an exponential fit is ap-

plied to these observations. This statistical consistency

check discards as outliers any observations that laymore

than three standard deviations from this fit.

FIG. 2. NARR synoptic analyses from (left) 0000 UTC 27 Jul and (right) 0000 UTC 28 Jul 2014. Shown are (top)

the 500-hPa geopotential height (m; contoured) and wind speed [in knots (kt), where 1 kt 5 0.51m s21; filled] and

(bottom) the mean sea level pressure (hPa; black contours), surface temperature (8C; red contours), and surface

dewpoint temperature (8C; filled).
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Finally, a gross spatial consistency check is performed

to remove observations that are in substantial dis-

agreement with their surroundings. Altimeter observa-

tions from the Meteorological Atmospheric Data Ingest

System (MADIS), which include airport observations

and other ‘‘mesonet’’ surface-observing networks, are

compared to the smartphone altimeter observations.

Specifically, the nearest eight MADIS altimeter obser-

vations to each smartphone observation are distance-

weighted interpolated to the smartphone observation to

produce a ‘‘synthetic’’ observation to compare with the

smartphone altimeter. The standard deviation of the

altimeter settings from those nearest eight stations is

also computed. If the difference between the smart-

phone altimeter observation and the interpolated syn-

thetic observation is greater than twice this standard

deviation, then the smartphone altimeter observation is

rejected as an outlier. This tolerance is specifically gen-

erous to avoid rejecting observations of localized meso-

scale features or observations in complex terrain.

However, this must be balancedwith the desire to reduce

noise in these observations (section 3b). Even with the

tolerances used here, this spatial consistency check re-

moves over half of the candidate smartphone observa-

tions. The average fraction of observations removed by

each of these quality control checks is summarized in

Table 1. The set of smartphone altimeter observations

remaining after these checks is used for data assimilation,

with no further attempt to correct for bias or other errors.

These altimeter observations are then compared with

altimeter observations obtained 1h prior. Any altimeter

observations from the same device at both the current

time and 1h prior that are separated in distance by less

than 13m are used for computing the altimeter tendency

at that location. The 13-m threshold represents the ap-

proximate distance error associated with truncation in

the latitude and longitude values received from the

smartphone. While it is possible for vertical motions of

smartphones at the same horizontal location to in-

troduce nonmeteorological signal into these tendency

calculations, the randomness of this vertical motion

(some phones going up while others going down) and

the limited number of buildings greater than two or

three stories outside of dense urban cores limits this

potential error to within the prescribed 1 hPa2 h22 ob-

servation error variance. The 1-h change in altimeter

setting is computed, using the observation times closest

to the top of the hour if the observation reports fre-

quently. The 1-h altimeter tendencies of greater than

7hPa are discarded as unrealistic. A gross spatial con-

sistency check is applied, described above for the

smartphone altimeter observations, but instead com-

paring the 1-h smartphone altimeter tendencies to sur-

rounding MADIS 1-h altimeter tendencies. This check

rejects the majority of 1-h tendency observations (60%

on average; Table 1). The remaining tendency obser-

vations are used for data assimilation.

2) SUMMARY OF AVAILABLE SMARTPHONE

OBSERVATIONS

Figure 3 shows the average number of SPOs within

30km3 30km bins that are available every hour during

the case study period and that pass the quality control

checks described above. Because only two small apps

that require user permission to transmit pressure ob-

servations are considered here, the number of available

observations acquired is from only a very small per-

centage of the total number of smartphones able to

collect pressure observations. The availability of hourly

pressure observations (Fig. 3a) and 1-h pressure ten-

dency observations (Fig. 3b) largely follow the pop-

ulation density, which is expected of crowdsourced

observations. Requiring smartphones to be nearly sta-

tionary for 1 h to compute pressure tendency and em-

ploying the spatial consistency check limits the number

of smartphone pressure tendencies to about 20% of the

number of pressure observations, on average. Figures 3c

and 3d show the standard deviations of the number of

observations in each 30km 3 30km bin over the dura-

tion of the case study for pressure observations and

pressure tendency observations, respectively. Most land

areas of the domain have nonzero standard deviations,

indicating that transient SPOs are able to sample the

domain even outside the urban centers. Additional as-

pects of the SPO network are discussed in section 3a.

3) OTHER OBSERVATIONS

To verify precipitation forecasts, we use the National

Centers for Environment Prediction (NCEP) stage IV

hourly precipitation analyses (Lin andMitchell 2005). In

TABLE 1. Average fraction of all available smartphone obser-

vations removed by the quality control (QC) checks described in

section 2a during each assimilation cycle. The numbers in boldface

highlight the percentage of observations remaining after the QC

check.

QC check Percent rejected

Duplicate obs 9

Valid range ,1

Statistical consistency 2

Spatial consistency 52

Remaining observations 36

1-h altimeter tendencies

Valid range ,1

Spatial consistency 60

Remaining observations 40
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addition, we use archived Next Generation Weather

Radar (NEXRAD) level II radar reflectivity data to

composite radar reflectivity observations from all radars

within the study domain at 1-km elevation every

hour during the study period using the Python-ARM

Radar Toolkit (PyART; https://github.com/ARM-DOE/

pyart). These composites facilitate evaluation of simu-

lated radar reflectivity fields. We also use Automated

Surface Observing System (ASOS) aviation routine

weather reports (METAR) observations for verification

of skill and to compare the analysis quality from SPOs to

standard METAR altimeter observations.

c. Forecast model

The forecast model in these simulations is the Ad-

vanced Research core of theWRF (ARW), version 3.6.1

(Skamarock et al. 2008). The model grid structure and

parameterizations are set to match the configuration of

the operational National Centers for Environmental

Prediction (NCEP) HRRR forecasting system as of

March 2015 (Benjamin et al. 2015). The horizontal grid

spacing is 3 kmwith 51 vertical levels. Parameterizations

include Thompson cloud microphysics (Thompson et al.

2008), a nine-level RUC/Smirnova land surface model

with Moderate Resolution Imaging Spectrometer

(MODIS) derived land surface characteristics includ-

ing fractional coverage (Smirnova et al. 2015), and

the Mellor–Yamada–Nakanishi–Niino (MYNN)–Olson

boundary layer scheme (Nakanishi and Niino 2009;

Olson and Brown 2012). No convective parameteriza-

tion is used. We apply gravity wave damping in the up-

per 5 km of the model domain.

Initial and boundary conditions are derived from

HRRR forecasts archived at the National Center for

Atmospheric Research (NCAR). Though many aspects

of our simulation design mimic the forecasts from the

operational HRRR, in our cycling data assimilation

experiments we do not assimilate the full complement of

FIG. 3. (a) Average number of SPOs and (b) 1-h smartphone pressure tendency observations available at each

assimilation time during the case study period. Observation counts are binned into 30 km 3 30 km bins. The

standard deviations of the observation counts during the case study period are shown for (c) SPOs and (d) 1-h

smartphone pressure tendency observations.
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observations that are used in the operational HRRR

(e.g., GOES cloud observations, lightning, and radar

data) to specifically highlight the contributions of SPOs.

As such, we do not anticipate that the performance of

our forecasts will match that of the operational HRRR.

However, an ensemble system based on the HRRR

physics offers a reasonable convection-allowing plat-

form for testing various observational datasets.

For these experiments, a 50-member ensemble is

generated at 0000 UTC 26 July 2014 with initial condi-

tions derived from the HRRR analysis at that time.

Figure 1a shows the geographical extent of the simula-

tion domain. To generate ensemble diversity, we employ

the stochastic kinetic energy backscatter scheme

(SKEBS) available in WRF (Berner et al. 2011), which

provides good background error representation in me-

soscale models (e.g., Ha et al. 2015). We integrate the

ensemble members using 1-h HRRR forecasts as

boundary conditions, which are also perturbed using

SKEBS. Here, the maximum amplitude of both

streamfunction (psi) and temperature (t) perturbations

in SKEBS is set to 1 3 1024 and the decorrelation time

scale to 1 h. After allowing perturbations to spin up, we

found these values produced an ensemble with 1-h

forecast variance in surface temperature, wind, and

pressure fields that approximated the mean squared

error in the ensemble mean measured against METAR

surface observations (not shown). The ensemble mem-

bers integrate without data assimilation for 12h to allow

SKEBS to spin up ensemble perturbations. Ensemble

cycling with data assimilation begins at 1200 UTC 26 July

2014. The ensemble is cycled hourly, but 6-h forecasts are

made after every ensemble cycle, with boundary condi-

tions provided by the 0–6-h HRRR forecast initiated at

the same time. In these forecasts, only the surface fields

(2-m temperature, 10-m u and y winds, surface pressure,

and 2-m specific humidity), the simulated reflectivity, and

the accumulated rainfall at the surface are retained for

analysis.

d. Data assimilation

For data assimilation, we use the ensemble adjust-

ment variation of the ensemble Kalman filter (EAKF;

Anderson 2001) as implemented in the Data Assimila-

tion Research Testbed (DART; Anderson et al. 2009).

To maintain sufficient ensemble spread, both spatially

and temporally adaptive covariance inflation (Anderson

2009) and sampling error correction for a finite ensem-

ble size (Anderson 2012) are applied. In addition, we

apply horizontal spatial localization to all assimilated

observations, with covariance weights defined using a

Gaspari–Cohn function (Gaspari and Cohn 2006) with a

half-width of 500 km. This radius is similar to or slightly

smaller than radii used in other recent studies that as-

similate mesoscale surface pressure observations (e.g.,

Wheatley and Stensrud 2010;Madaus et al. 2014; Sobash

and Stensrud 2015) to reflect the higher spatial density of

the smartphone observations. No vertical localization

is used.

In practice, the smartphone pressure observations are

assimilated as altimeter setting observations (and, like-

wise, pressure tendency as altimeter tendency) as noted

above. Observation error variances are set to 1 hPa2 for

the altimeter setting and 1hPa2 h22 for the altimeter

tendency, following Madaus et al. (2014). To reduce the

negative impact of outlier observations, prior to the as-

similation of each observation, the innovation (the dif-

ference between the observation value and the

ensemble mean estimate of the observation) is com-

pared with the standard deviation in the ensemble esti-

mate of the observation. Any observations where the

innovation magnitude is greater than 3 times the spread

in the ensemble observation estimate are rejected as

outliers and are not assimilated.

e. Experiments

We perform two kinds of experiments to analyze the

impact of smartphone pressure and pressure tendency

observations on the analyses and forecasts. In both sets

of experiments, the reference is a control experiment

(control) that assimilates no observations and is entirely

driven by the HRRR boundary conditions. We

perform a set of three no-cycling experiments (e.g.,

Madaus et al. 2014) to specifically focus on contributions

of SPOs to analysis quality. For these experiments, the

same ensemble state at each hour of the control exper-

iment is used as the background state for assimilation.

We then assimilate either METAR altimeter

(METAR_only_nocy), smartphone altimeter (phone_

only_nocy), or 1-h smartphone altimeter tendency

(phone_tend_only_nocy) observations to produce an

analysis. In these no-cycling experiments, the ensemble

is not cycled between assimilation times: at each as-

similation time, the background state from the control

experiment is used. Analyses of surface fields are then

verified against METAR observations. This allows the

analysis quality from each observation type to be com-

pared given the same set of background (prior) states.

Second, we perform two experiments to evaluate the

impacts of the smartphone observing network on me-

soscale forecasts using fully cycled ensembles as de-

scribed above. We assimilate each observation type

individually in these experiments to clearly identify the

strengths and weaknesses of each type of smartphone

observation. The phone_only experiment assimilates

only smartphone altimeter setting observations, while
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the phone_tend_only experiment only assimilates 1-h

smartphone altimeter tendency observations.

f. Verification methods

A variety of metrics are considered for evaluating the

performance of the ensemble forecasts. For verification

of ensemble forecasts against independent observations,

the root-mean-square error is computed as

RMSE5

�
1

n
�
n

i51

( f
i
2 o

i
)2
�1/2

, (2)

where n is the total number of grid points, fi is the

forecast value at each verification observation, and oi is

the value of the verifying observation.

For computing probabilistic forecast skill from the

ensembles, the Brier score (BS) is employed (Brier

1950), which is similar to RMSE but for probabilistic

forecasts:

BS5
1

n
�
n

i51

(P
i
2 o

i
)2 , (3)

where n is the total number of locations (or times) where

forecasts are produced, Pi is the forecast probability of

occurrence of a specific event at each location, and oi is a

value of 1 or 0, depending on whether an event occurred

at that location or not, respectively. In our analysis, Pi is

determined by the fraction of ensemble members that

forecast the event to occur. We specifically use the Brier

score within the context of the Brier skill score (BSS) to

compare the skill of one forecast against another:

BSS5 12
BS

fcst

BS
ref

, (4)

where BSfcst is the Brier score from the test forecast and

BSref is the Brier score from some reference forecast. A

negative BSS indicates the test forecast has less skill

than the reference forecast (here, forecasts from the

control experiment), while a positive BSS indicates

greater skill than the reference. A perfect forecast would

have a BSS of 1.

To evaluate the skill of these simulations across dif-

ferent spatial scales, we employ the fractions skill score

(FSS; Roberts and Lean 2008), which extends the Brier

skill score to evaluations of fractional coverage across

different length scales. The FSS is computed as

FSS5 12
FBS

FBS
worst

, (5)

where FBS is the fractions Brier score:

FBS5
1

N
�
N

j51

(O
j
2M

j
)2 . (6)

At each grid point j, the fractional coverage of a bi-

nary metric (e.g., precipitation greater than 1mm) is

evaluated within a specified spatial neighborhood in

both the model forecastMj and the gridded observation

data Oj. The squared difference in these coverages is

averaged over all N points in the domain. Where both

the model and the observations have the same fractional

coverage within the neighborhood, FBS 5 0. If there is

mismatch, FBS . 0. To complete the FSS, the FBS is

compared with FBSworst, which is the expected score

when there is no overlap in the fractional coverage be-

tween model and observations:

FBS
worst

5
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N
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j 1 �
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j51

M
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2

!
. (7)

The FSS varies from 0 for a forecast with no skill to 1

for a perfect forecast. FSS may be evaluated using dif-

ferent spatial neighborhoods over which fractional

coverage surrounding each grid point is computed. This

indicates how the skill in the forecast varies as a function

of spatial scale. For instance, the forecast may correctly

indicate the location and extent of a broad line of con-

vective storms but have errors in the exact placement of

individual convective elements within that line. In this

case, the FSSwould be higher at larger spatial scales (the

scale of the convective line as a whole), but lower at

smaller spatial scales (the scale of individual

convective storms).

Similarly, for some forecast evaluations we consider

neighborhood probability forecasts instead of raw

gridpoint-based probabilities. Specifically, we evaluate

30-km neighborhood probabilities as the fraction of

ensemble members that meet some criteria at each grid

point or within 30km of that grid point. Neighborhood

probabilities reduce penalties for small errors in the

exact location of predicted features and are commonly

used for precipitation evaluation (e.g., Schwartz

et al. 2010).

3. Results

a. Assimilation performance

Figure 4 shows the number of smartphone altimeter

and altimeter tendency observations available and as-

similated in the fully cycled experiments (phone_only

and phone_tend_only). Recall that the number of

available observations for this study represents only a

small fraction of the total number of smartphones that
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are capable of observing surface pressure. Here, the

available observations are those that have passed all the

quality control checks described in section 2a. The re-

jection of available observations occurs when the ob-

served value is more than three standard deviations

from the ensemble mean estimate of the observation, as

described above. At any given assimilation time, an

average of 15% of the smartphone altimeter observa-

tions are rejected as a result of this constraint. However,

none of the altimeter tendency observations are re-

jected. The lack of rejected tendency observations

highlights one benefit of this observation type, as ten-

dencies are insensitive to observation biases that are

constant in time (Madaus et al. 2014).

The number of available SPOs varies in time. On all

days there is a peak in the number of observations

during the local daytime (between 1500 and 2100 UTC)

with secondary peaks during evening hours (between

0300 and 0900 UTC). The diurnal cycle is more pro-

nounced in the smartphone altimeter tendency obser-

vations, where distinct peaks are observed during the

local overnight hours (between 0300 and 1200 UTC).

These peaks are explained by the smartphone altimeter

tendency algorithm, which requires the phone to be

stationary for the duration of the tendency (here, 1 h) to

produce an observation. This becomes more likely when

the phone is not in motion, hence the greater number of

observations during the overnight hours.

b. Observation consistency

As noted in section 2b, the smartphone pressures were

subject to quality control to remove outlier observa-

tions. As noted above, some 15% of the remaining ob-

servations are rejected as outliers by the assimilation

system. To evaluate the consistency between the ob-

servations that are assimilated (i.e., how well nearby

observations agree on the sign of the assimilation in-

crement), we compare the analysis error magnitude (the

analysis ensemble mean at the observation location

minus the observation value) to the background (prior)

error magnitude (the background ensemble mean at the

observation locationminus the observation value) for all

assimilated smartphone observations in the no-cycling

experiments. In an ideal case, it is expected that the

analysis error is reduced from the background error for

the vastmajority of all observations assimilated. In other

words, the assimilation process should, on average, bring

the ensemble mean closer to the observations to pro-

duce an analysis with lower error. Figure 5 breaks down

the difference in analysis error and background error

FIG. 4. Number of observations available (dashed) and assimilated (solid) as a function of

analysis time during the cycling experiments. Shown are the (top) phone altimeter observations

(from phone_only) and (bottom) phone altimeter tendencies (from phone_tend_only). Here,

the available observations are those that have passed all quality control checks described in

section 2a.
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magnitudes for all observations assimilated in phone_

only_nocy, phone_tend_only_nocy, andMETAR_only_

nocy.

In the phone_only_nocy experiment (Fig. 5, left) the

analysis error is greater than the background error for

almost 45% of the assimilated observations. The

Kalman filter guarantees an analysis that is between

the observation value and the background estimate

when assimilating each observation individually.

Thus, an increase in analysis error indicates that co-

variances from neighboring observations are in-

troducing local increments in conflict with what is

suggested by that observation itself. It is possible that

the ensemble covariances are suboptimal or the lo-

calization radius used is inappropriate. However, this

seems unlikely as the localization half-width radius

used here (500 km) agrees well with computed corre-

lation length scales for surface pressure from this en-

semble (Fig. 7). In contrast, for the METAR altimeter

observations (Fig. 5, right), only about 12% of the

observations have an analysis error worse than the

background error. With such a large percentage of

SPOs where the analysis is worse, it is likely there are

significant inconsistencies within the SPO network,

which may limit the ability of these observations to

inform the state in a useful way.

The 1-h altimeter tendency observations have better

agreement (Fig. 5, center), with almost 84% of the ob-

servations having an analysis pressure tendency error

that is smaller in magnitude than the background pres-

sure tendency error. While there still appear to be some

inconsistent observations, the analysis error is smaller

for most altimeter tendency observations, suggesting

that observations based on relative changes in the

pressure observations are more consistent than those

using the potentially biased raw pressure values. This

agrees with the findings of Madaus et al. (2014), who

showed that altimeter tendency observations could

alleviate the bias problem in crowdsourced pressure

observations.

c. Surface analysis quality

To evaluate the quality of the surface analyses from

assimilating SPOs, we examine the ensemble mean

RMSE of the analyses evaluated against METAR ob-

servations in the no-cycling experiments. Recall that in

these experiments at each assimilation time the same

background ensemble state is used (from the control

experiment) as the prior state, allowing a fair compari-

son of assimilation effectiveness. Figure 6 shows the

RMSEs in these analyses, both as a function of assimi-

lation time (left panels) and as differences in error be-

tween the control and phone_only_nocy, control and

phone_tend_only_nocy, and control and METAR_

only_nocy experiments (right panels). We note that in

the METAR_only_nocy experiment, the METAR al-

timeter observations assimilated are the same as those

used for verification, so this is not an independent veri-

fication of analysis quality for the METAR_only_nocy

experiment.

Surface pressure analyses (METAR altimeter; Fig. 6,

top) are improved over the control for the majority of

the time in both phone_only_nocy and phone_tend_

only_nocy. This affirms that, on average, the smart-

phone pressure observations are contributing positively

to constraining the surface pressure field. As expected,

the analysis error at METAR altimeter locations when

those METAR altimeter observations are assimilated is

significantly reduced from the control. Virtually no im-

provement is seen in the 10-m wind analyses (Fig. 6,

middle) or 2-m temperature analyses (Fig. 6, bottom)

when the smartphone altimeter observations or 1-h

smartphone altimeter tendency observations are as-

similated. However, improvements are noted in the

analyses of these fields when the METAR altimeter

observations are assimilated.

FIG. 5. Fraction of assimilated smartphone observations in the no-cycling experiments where

the analysis ensemble mean error magnitude is less than the background ensemble mean error

magnitude (gray) and where it is greater (white). Shown are (left) the smartphone altimeter

observations (phone_only_nocy), (center) the smartphone 1-h altimeter tendency observations

(phone_tend_only_nocy), and (right) the METAR altimeter observations (METAR_only_

nocy).
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We explore two factors contributing to the lack of

improvement in 10-mwind and 2-m temperature analyses

when SPOs are assimilated: correlation length scales and

noise in the observations. Figure 7 shows estimates of the

average error correlation magnitude computed from the

ensemble as a function of distance between the surface

pressure and other variables for these simulations. We

note that these length scales may vary depending on the

local variability in the surface characteristics or topog-

raphy; these represent domain-wide averages. In partic-

ular, correlation length scales may be smaller in areas of

complex terrain, where increased observation density

may be critically important. Surface pressure correlated

to itself decreases in magnitude to 0.2 around 500km

(Fig. 7, left). This indicates the localization radius used

here is well calibrated for updating surface pressure.

However, the correlation magnitudes between surface

pressure and 2-m temperature (T2) or 10-m wind (U10)

are much smaller in magnitude, and asymptote to a

‘‘noise’’ magnitude on much shorter length scales of 100–

200km. Thus, METAR altimeter observations—being

collocated with the verifying 10-m wind and 2-m tem-

perature observations—are more likely to contribute to

improving the local temperature analysis.

FIG. 6. RMSEs of the (top) altimeter setting, (middle) U10, and (bottom) T2 analyses in the no-cycling exper-

iments as verified against ASOS/METAR observations. Statistics are given for control (blue), phone_only_nocy

(green), phone_tend_only_nocy (orange), andMETAR_only_nocy (pink). Shown are (left) RMSE time series and

(right) box-and-whisker plots of the time-by-time differences between the control forecast RMSE and each of the

other experiments. Note that for the METAR altimeter results in the top panel, the METAR_only_nocy experi-

ment (pink; dashed) assimilates the METAR altimeter observations and therefore, for this experiment, the ob-

servations are not independent.
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However, since many SPOs are clustered in urban

areas where METAR observations are nearby (Fig. 3),

correlation length scales alone likely do not explain why

SPOs offer no improvement to 10-m wind and 2-m

temperature analyses. We therefore investigate how

observation noise may affect the quality of the analyses.

With noisy pressure observations and relatively short

correlation length scales for 2-m temperature and 10-m

wind (Fig. 7), we expect the error in the temperature and

wind analyses to decrease with locally increased obser-

vation density. This occurs as the analysis state is less

influenced by any individual observation and opposing

errors from multiple nearby observations may cancel

out. Figure 8 examines the analysis error magnitude for

all (unassimilated) METAR observations as a function

of the surrounding smartphone observation density in

the phone_only experiment. At each assimilation time,

the number of SPOs within 50km of each METAR

observation is computed, as well as the analysis error

verified against that METAR observation. These values

are used to construct the 2D histograms seen in Fig. 8.

For METAR observations with zero SPOs within 50km

(left columns), the mean analysis errors are relatively

low for all variables. However, when there are even a

few smartphone observations within 50km of a

METAR observation, the range of analysis error

broadens and the mean error increases. As the number

of smartphone observations within a 50-km radius

FIG. 7. Average correlation coefficient magnitude as a function of distance between (left) surface pressure (PSFC), (center) T2, and

(right) U10. These plots are generated from a subsample of 10 grid points randomly drawn from background (prior) ensemble pressure

fields at each assimilation time (total sample size of 730) in the control experiment. Gray shading indicates one standard deviation of

correlation magnitude from the samples compared.

FIG. 8. Two-dimensional histograms of unassimilated (left) METAR altimeter, (center) T2, and (right) U10 observations from all

assimilation times in the phone_only experiment binned by the analysis error magnitude (y axis) and the number of smartphone altimeter

observations within 50 km of the evaluated observation (x axis). Bins are inclusive along the left edge, except for the first bin, which only

includes METAR observations with zero smartphone observations within 50 km. The mean analysis error magnitude in each bin is

denoted by the black line. Note the quasi-logarithmic scaling along the x axis.
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increases, the mean analysis error decreases along with

the error variability. This finding is consistent with the

expectation that, without better observation quality

control, cancellation of errors frommultiple smartphone

observations is required to isolate a net weather signal.

d. Forecast errors in surface fields

We now turn to the fully cycled experiments to ex-

plore how assimilating SPOs affects the forecast.

Figure 9 evaluates the short-term (1h) forecasts of se-

lected surface fields against unassimilated METAR

observations in phone_only and phone_tend_only.

Small improvements are noted in the 1-h 10-m wind and

altimeter forecasts, where errors are less than the con-

trol over 60% of the time. However, the sample size of

forecasts here is not enough for this improvement to be

considered statistically significant. In contrast, 1-h 2-m

temperature forecasts are actually worsened when ei-

ther type of SPO is assimilated. For all these variables,

there is no significant difference between the improve-

ments due to the assimilation of smartphone altimeter

observations versus smartphone altimeter tendencies,

though the errors in the altimeter forecasts are often

lower in phone_tend_only than phone_only. The latter

may reflect the insensitivity of altimeter tendency ob-

servations to observation bias, producing amore reliable

estimate of the altimeter field.

e. Precipitation forecast skill

We evaluate precipitation forecast skill by comparing

hourly precipitation accumulation forecasts to hourly

NCEP stage IV 1-h precipitation accumulation analyses.

FIG. 9. As in Fig. 6, but here evaluating 1-h forecasts of surface fields against unassimilatedMETARobservations in

the cycled phone_only and phone_tend_only experiments.
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We examine the FSSs for ensemble mean 1-h forecasts

of precipitation $1mm across a variety of spatial scales

in Fig. 10. Both the phone_only and phone_tend_only

experiments improve on the control forecasts across all

spatial scales examined. Forecast skill increases as spa-

tial scales increase, which is expected for the FSS. We

note that Roberts and Lean (2008) suggest that forecasts

with ‘‘useful’’ skill typically require FSS$ 0.5. Here, this

threshold is not reached until spatial scales of 120 km,

which indicates that these precipitation forecasts could

be considered useful for broad mesoscale precipitation

forecasting.

The FSS at the 30-km spatial scale is computed as a

function of forecast hour for all the experiments to see

how forecast improvements persist in time. Figure 11

shows these FSS values for the phone_only and phone_

tend_only experiments relative to the control FSS. The

forecast improvement (higher skill) in the phone_only

experiment decays with increasing forecast hour, with

the advantage over the control being reduced by 80% at

hour 4. The skill decay in the phone_tend_only experi-

ment follows a similar pattern, with skills in the phone_

only and phone_tend_only experiments being nearly

identical by hour 4. Thus, the precipitation forecast

improvements provided by the smartphone observa-

tions in either form can persist for several hours into the

forecast.

Figure 12 shows a reliability diagram for 1-h ensemble

probabilistic forecasts of 1-h precipitation$ 1mmusing a

30-km neighborhood probability. A perfectly calibrated

probabilistic forecast would lie upon the diagonal 1–1

line. All three ensemble experiments, including the con-

trol, produce similarly reliable forecasts for probabilities

below 35%. There is a slight tendency for under-

prediction in all experiments for these lower proba-

bilities, but overall the reliability is good. For higher

probabilities, the number of occurrences drops con-

siderably (not shown). From 35% to 50% probability,

those experiments assimilating smartphone observa-

tions are slightly more reliable than the control,

though all begin to deviate from the 1–1 line at this

point. The phone_only experiment produces higher

FIG. 10. FSSs for 0–1-h ensemble mean forecasts of precipitation

$1mm in the control (blue), phone_only (red), and phone_tend_

only (gold) experiments.

FIG. 11. FSSs relative to the control FSS at 30-km spatial scale for

1-h precipitation accumulation forecasts $ 1mm as a function of

forecast hour.

FIG. 12. Reliability diagrams for 0–1-h ensemble forecasts of

precipitation$ 1mm with a 30-km neighborhood probability filter

applied for the control (blue), phone_only (red), and phone_tend_

only (gold) experiments.
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probability magnitudes than either the control or the

phone_tend_only experiments. This is likely related to

the greater number of smartphone pressure observations

assimilated, which produces lower analysis spread.

To evaluate precipitation forecasts geographically, we

compute the BSSs of 1-h ensemble forecasts exceeding a

threshold value (here, 1mm) using the control forecasts

(with no assimilation) as the baseline, again with 30-km

neighborhood probabilities. Figure 13 shows maps of

BSSs over the duration of the case study for the first hour

of each forecast. Because of the relatively short time

period of the case study, precipitation is not observed at

all points and the resulting maps are somewhat noisy.

However, distinct patterns are detectable.

For the 1-mm threshold in the phone_only experiment

(Fig. 13, left panels), there are broad areas of notable

improvement over the control (BSS . 0), particularly

over the northeastern states and in eastern North Car-

olina. There are some areas where skill is reduced from

the control, chiefly in the southern Great Lakes area

near Chicago, Illinois, and into Indiana. There are sev-

eral possible explanations for this. One is that the areas

of skill degradation are near the western edge of the

domain, where there are relatively few upstream ob-

servations assimilated that could help constrain the flow.

A second explanation involves the structure of the

precipitation. The precipitation in the southern Great

Lakes area was mainly due to isolated convection initi-

ated early in the study period in advance of stronger

synoptic-scale forcing (Figs. 1 and 2). Madaus and

Hakim (2016) find that the convective-scale pressure

signals preceding isolated convective initiation are likely

too small in magnitude and spatial scale to be detected

except by an extremely dense network. While the Chi-

cagometropolitan area has a high density of smartphone

observations, this high density is limited to a small area,

and the surrounding rural areas (where much of the

convection occurred) have significantly lower densities

(Fig. 3). When combined with the expected noise and

error in SPOs, it is possible that local errors in nearby

smartphone observations led to poorly initialized con-

vective features, degrading skill. In contrast, the pre-

cipitation in the eastern part of the domain occurred in

response to more organized meso- and synoptic-scale

FIG. 13. BSSs of 1-h precipitation forecasts greater than 1mm for the entire case study after assimilating (top left)

only smartphone altimeter observations and (top right) 1-h smartphone altimeter tendency observations with

control forecast skill as baseline. This evaluation uses 30-km neighborhood probabilities. (bottom) The areas of

positive skill with regions with average observation densities greater than five observations per 30 km3 30 km bin

outlined in blue. Skill scores are evaluated with 30-km neighborhood probabilities.
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forcing in the latter half of the study period (Fig. 2). We

expect that surface pressure observations are able to

constrain these features better and, in turn, produce

improved precipitation forecasts.

The phone_tend_only experiment does not produce

as large a forecast improvement as the phone_only ex-

periment, particularly over the northeastern United

States. However, these observations do produce im-

provements in the mid-Atlantic and eastern North

Carolina. In addition, the phone_tend_only observa-

tions do a better job with precipitation in the southern

Great Lakes area, again suggesting that error (here,

bias) in the raw phone altimeter observations may have

contributed to poor convective initiation forecasts.

We repeat the analysis above, but for a threshold of

10mm in Fig. 14 to examine if forecast skill can extend to

more intense rain events where convective processes are

more likely occurring. For both the phone_only and

phone_tend_only experiments, the overall improve-

ment of forecasts at this threshold is not as widespread,

with large areas of skill degradation. In addition, sub-

optimal adjustment of the ensemble state near the

western boundary of the domain tended to produce

spurious convective features that were quickly sup-

pressed. This contributed to negative skills near the

western boundary.

However, when the areas of improvement are com-

paredwith observation density (Fig. 14, bottompanels), it

is evident that many of the regions of forecast improve-

ment occur downstream from areas of high observation

density. In particular, there are large areas of positive skill

along the East Coast, downstream from the urban corri-

dor from Washington, D.C., through Boston, Massachu-

setts. Additional areas of positive skill are downstream

from urban central North Carolina and several interior

cities such as Pittsburgh, Pennsylvania, and Columbus

and Cincinnati/Dayton, Ohio. Interestingly, the area

around and downstream from one area with high obser-

vation density—Chicago—does not show robust im-

provement in precipitation forecasts in Fig. 14. As noted

above, we expect that the nature of the precipitation

around Chicago—namely, isolated convective initiation

without larger-scale organization—likely limits the ef-

fectiveness of smartphone observations.

The improvements in skill downstream from urban

areas can be examined in light of the statistics shown in

section 3a. There appear to be inconsistencies within the

smartphone pressure network, with disagreement be-

tween nearby observations. This was also true to a more

limited degree for the smartphone tendency observa-

tions. Although it would be tempting to suggest that the

enhanced observation density in urban areas is better at

FIG. 14. As in Fig. 13, but for a precipitation threshold of 10mm.
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resolving convective features, the noise in these obser-

vations makes this unlikely. Complicating sensor error

in urban areas is the number of high-rise buildings,

which could contribute to greater variability in the

pressures reported by smartphones at similar locations.

Despite this observation noise, an alternative explana-

tion for skill improvement is that within these dense

urban areas, there are a sufficient number of observa-

tions such that inconsistent values are largely being

canceled out during the assimilation. What emerges is a

consensus on a true pressure signal in that area, which

contributes to an improved forecast. This would also

better explain the reduction in skill in areas away from

dense observations. With fewer observations, error in

any one observation is less likely to be canceled by

surrounding observations. These errors are then able to

propagate and magnify downstream.

f. Performance for the 27 July 2014 Ohio River valley
MCS

1) BACKGROUND AND ASSIMILATION

PERFORMANCE

Between 0000 and 0600 UTC, a mesoscale convective

system formed in southeastern Illinois and propagated

southeastward through the southern Ohio River valley.

This represented one of the most organized convective

features seen during the case study and was not forecast

well by the HRRR (Fig. 1, boxed region). Furthermore,

well-developed MCSs have well-established cold pools

with pronounced pressure signatures (Houze 2004),

making them a promising target for mesoscale pressure

observations. Thus, this poorly forecastMCS represents a

good candidate for investigating forecast contributions

from smartphone pressure observations.

Figure 15 shows assimilation increments in the phone_

only and phone_tend_only experiments for a variety of

surface fields at 0200 UTC 27 July 2014 as the developed

MCS is crossing the Ohio River. Note that there are a

large number of smartphone observations in the Louis-

ville, Kentucky, area, which is about to be impacted by

the MCS. For the phone_only experiment (Fig. 15, top),

the pressure increments at this time are broad in scale,

with positive pressure increments of 1–2.5 hPa along the

southern end of the MCS where convective cells were

more discrete. There are additional large areas of pres-

sure increases well ahead of the MCS to the south.

Temperature increments (Fig. 15, center) show some

areas of negative adjustment to the north of the south-

western end of the convective line, which is an

FIG. 15. Assimilation increments for (left) PSFC, (center) T2, and (right) U10 at 0200 UTC 27 Jul 2014 for the (top) smartphone

altimeter assimilation experiment (phone_only) and (bottom) 1-h smartphone altimeter tendency experiment (phone_tend_only). Dots

indicate the locations of smartphone altimeter observations in the top row and smartphone altimeter tendency observations in the bottom

row assimilated at this time. Green dots indicate locations where the error magnitude at the observation location was reduced in the

analysis, while purple dots are where the error magnitude was larger in the analysis (see section 3b). Observed reflectivity at 1-km

elevation composited from surrounding NEXRAD radar sites is shown for reference, contoured at 35, 40, and 45 dBZ (black contours).

The area of Louisville is the concentration of observations to the left of the label in the bottom-right panel.
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appropriate place for cold anomalies given the expected

presence of a developing cold pool there. However,

there are additional negative temperature increments of

1K just ahead of the northeastern end of the MCS,

which are more difficult to attribute. The U10 in-

crements hint at increased convergence along the or-

ganized convective band that makes up the northeastern

half of the MCS, which is broadly expected.

In the phone_tend_only experiment (Fig. 15, bottom),

the increments are well aligned with the expected

structure of the MCS. There are positive pressure in-

crements and negative temperature increments imme-

diately behind the developed convective line in the

eastern half of the MCS. Additionally, increased low-

level convergence is inferred within the convective line

with positive U10 increments to the west. However, we

also note that these increments are limited mostly to the

vicinity of the dense concentration of observations

around Louisville. As such, the alignment of the in-

crements in relation to the MCS may be coincidental,

but examining increments at other assimilation times

suggests persistent bias is not involved (not shown).

The increments 1 h later (0300 UTC 27 July 2014) are

shown in Fig. 16. By 0300 UTC, the organized convec-

tive line at the leading edge of the MCS has progressed

southeastward into Kentucky and crossed the Ohio

River. The Louisville area (with its higher density of

smartphone observations) is now contained within the

trailing cold pool of the MCS. The increments in both

the smartphone altimeter and smartphone altimeter

tendency assimilation experiments reflect this. The

positive increments produced by the altimeter obser-

vations do include the area where pressure rises are

expected behind the convective line, but these pressure

rises extend out in front of the line as well. There are

additional large increments well out ahead of the line.

The altimeter tendency observations produce positive

pressure increments that are positioned along and be-

hind the convective line and within the trailing strati-

form region. Similarly, the temperature increments for

both experiments show an anticipated negative adjust-

ment in the area of the cold pool. For U10 increments

the largest positive increments from the altimeter ob-

servations occur to the north and east (ahead) of the

convective line. The altimeter tendency observations

produce positive u-wind increments behind the leading

convective line, contributing to increased convergence

within the convective line (where it would be expected).

To summarize these assimilation increments, both the

smartphone altimeter observations and the 1-h altimeter

tendency observations appear to capture the signal of

this MCS as it progresses through the area, and adjust-

ments are made to the low-level temperature and wind

fields that are consistent with the structure of an MCS

and its associated cold pool. Figures 15 and 16 also show

whether or not the assimilated observations (colored

dots) reduce (green) or increase (purple) error in the

analysis state. A proportionally larger number of the

FIG. 16. As in Fig. 15, but for the assimilation at 0300 UTC 27 Jul 2014.
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altimeter observations showed increased analysis error

for these assimilation times as compared to the altimeter

tendency observations, reflecting the finding in section 3a

that there is disagreement between observations.

2) FORECAST EVALUATION FOR THE MCS CASE

The ensemble forecasts of convective evolution following

the 0200 UTC assimilation cycle are shown in Fig. 17. In

both the phone_only and phone_tend_only experiments,

despite low-level increments in Figs. 15 and 16 consistent

with the presence of the MCS, the adjustments are in-

sufficient to promote the initiation of convection near the

observed MCS. Higher ensemble probabilities for convec-

tive activity remain well to the north and west of where the

MCS was observed at these times. The phone_tend_only

experiment does maintain higher probabilities in the vicin-

ity of the observedMCS, but themaximumprobability area

is clearly removed from this location and in an area where

no significant convection is observed. In contrast, the con-

trol experiment produced a better forecast, with probability

maximamuch closer to the observedMCS in the 0200UTC

(Fig. 17) forecasts. The MCS was also not initiated in the

forecasts initiated at 0300 UTC in the phone_only and

phone_tend_only experiments (not shown). Examinations

of the full three-dimensional thermodynamic fields in both

experiments indicted that, despite low-level increments that

favor initiating convection, the assimilated SPOs did little to

weaken the convective inhibition aloft at these assimilation

times (not shown). This not only reflects the challenges of

data assimilation in the presence of convective features with

limited ensemble sampling, but also illustrates the limita-

tions of SPOs for capturing the full thermodynamic state of

the atmosphere. For convective events, a more compre-

hensive observing network is required.

4. Summary and future work

Weevaluated theperformanceof amesoscale, convection-

allowing ensemble forecast system that makes use of

pressure and pressure tendency observations from

FIG. 17. Ensemble 1–3-h forecast probabilities of 1-km simulated reflectivity exceeding 38 dBZ for the (top) control, (middle) phone_

only, and (bottom) phone_tend_only experiments initialized at 0200UTC 27 Jul 2014. Ensemble probabilities are calculated with a 30-km

neighborhood. The 38-dBZ observed 1-km composited reflectivity from surrounding NEXRAD radars is shown by black contours.
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smartphones. We examined a 3-day period marked by

several rounds of convective activity in the east-central

United States. Smartphone pressure observation density

closely mirrors population density, resulting in an un-

evenly distributed surface observation network that

varies in time. Quality control efforts to remove

suspect observations reject, on average, 64% of possible

smartphone observations, with the data assimilation

system rejecting an additional 5%–6% as outliers. As-

similation statistics show that analysis error is actually

increased at the locations of many of the assimilated

pressure observations, reflecting poor agreement within

the observing network. The 1-h pressure tendency ob-

servations, while only numbering about 20% of the total

available pressure observations, appeared to show bet-

ter agreement.

Analyses and forecasts after assimilating these ob-

servations had mixed levels of performance. Compared

with the control experiment, analyses of surface pres-

sure were improved, but no improvement was seen in

2-m temperature or 10-m wind analyses when evaluated

with independent observations. One-hour forecasts of

surface pressure and 10-m wind showed some im-

provement over the control, but errors were higher in

1-h 2-m temperature forecasts. Precipitation forecasts

for hourly accumulations of $1mm showed small, but

broad, improvement across all spatial scales when either

observation type was assimilated. Forecasts for 1-h pre-

cipitation accumulations$ 10mmwere improved in areas

downstream from areas with high observation density, but

there were skill reductions in areas where the observation

density is sparse. We speculate that this is likely due to

errors canceling in areas of high observation density.

A specific convective event—an MCS in the Ohio

River valley early on 27 July 2014—was examined to

evaluate the contributions of smartphone pressure

and pressure tendency observations. Assimilation in-

crements during this event agree well with expected

features of MCS structure, suggesting that the smart-

phone pressure observations are able to capture the

pressure signal from some mesoscale features. Despite

these promising assimilation increments, the ensemble

background states (which themselves were the product

of cycling on the smartphone observations) were unable

to initiate convection in response to these increments,

resulting in poor forecast performance for the MCS.

In this work, we compared the impact of SPOs and

SPO tendencies to a simple control experiment that

assimilated no additional observations. The forecast

improvements over this control were marginal and,

while suggesting that SPOs can capture some meteoro-

logical signal, the impacts of the current SPO network

appear small. Given these results, we suggest that further

research into smartphone pressure contributions to me-

soscale forecasts must wait for better quality control

methods, improved data assimilation techniques, or a

large increase in available SPO density.

Research into these areas is ongoing. These results

suggest that error within SPOs (or likely any crowd-

sourced observation type) is a critical issue. There are

current efforts under way to more robustly characterize

the errors in the smartphone pressure network and cor-

rect for them. Data assimilation methods—such as com-

bining observations (superobservations) in areas of dense

observations or adapting localization to better suit cor-

relation length scales—may also improve the SPO impact

and could be investigated. Future work should also ex-

amine what role smartphone observations may play as a

part of a more comprehensive mesoscale observation

system. Finally, there has been a groundswell of interest

in smartphone pressure observations, and a number of

additional providers with substantially more access to

the global smartphone network are working to collect

smartphone pressure observations. We expect the num-

ber of available smartphone observations to rise sub-

stantially in the coming years and hope to revisit these

observations at that time.
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